马力耕博士
- 基本信息
- 教育经历
- 工作经历
- 研究概述
- 发表文章

马力耕 博士
北京生命科学研究所研究员
Ligeng Ma, Ph.D.
Assistant Investigator, NIBS, Beijing
教育经历
Education:
1987年 河北师范大学生物系学士
B.S., Biology Department,
1990年 河北师范大学生物学系植物生理学专业硕士
M.Sc. Plant Physiology, Department of Biology,
1997年 中国农业大学博士
Ph.D. Biochemistry, College of Biological
工作经历
Professional Experience
2000-2004年 耶鲁大学分子、细胞和发育生物学系博士后
Postdoctoral Associate, Molecular, Cellular & Developmental Biology,
2005-2009年 北京生命科学研究所研究员
Assistant Investigator, National Institute of Biological Sciences,
研究概述
Research Description
我们实验室的研究兴趣一是G蛋白信号转导途径与植物生长发育调控。G蛋白信号转导途径在动物细胞信号转导中发挥重要功能,这个信号转导途径通常包括信号分子(配基)、G蛋白偶联的受体(GPCRs)、异三聚体G蛋白和下游的效应器等。其中GPCRs感受细胞外的信号并把信号传递到细胞内。动物细胞有大约23个Gα,6个Gβ和12 个Gγ,它们GPCR的种类很多,大约5%的动物基因编码GPCRs。而植物细胞中G蛋白和GPCRs的种类比较有限,拟南芥基因组序列完成后根据序列推测拟南芥基因组只编码1个Gα(GPA1),1个Gβ (AGB1),2个Gγ (AGG1和 AGG2)和20几个GPCRs,对这些基因的功能了解也非常有限,目前只对其中一种GPCR (GCR1) 的功能有所了解。
我们实验室首先筛选拟南芥GPCRs的突变体,然后通过遗传学、生物化学和功能基因组学的手段进一步研究这些GPCRs的功能、GPCRs与G蛋白的相互作用以及G蛋白信号转导途径其它组分。
我们实验室的另一个研究领域是植物发育的表观遗传学调控。目前的研究内容集中在组蛋白乙酰化修饰对植物形态建成和细胞分化的调节作用及其机制。
Heterotrimeric G-protein mediated signaling pathway plays a central role in such vital processes as vision, taste, and olfaction in animals. Animals have 23 Gα, 6 Gβ and 12 Gγ subunits, thus potentially assembling over a thousand of different G proteins. These signaling proteins are an area of intense research interest since many human diseases compromise G-protein signaling pathways. Actually, approximately 50% of the drugs used in clinical medicine target cellular pathways containing G-protein elements. In contrast to animal systems,Arabidopsis thaliana has only one canonical Gα (GPA1) and Gβsubunits (AGB1), and only two Gγ subunits (AGG1 and AGG2). Their function in plant systems is poorly understood, and only one of GPCRs (GCR1) has been shown to be directly coupled by G protein. Our first objective is to assess the function of GPCRs in Arabidopsis development by analysis of those GPCR knock-out mutants. The second objective is the determination of the regulation of genetic and physical interactions between G-protein pathway components in vivo.
Recent years have seen dramatic advances in the general field of epigenetics and chromatin remodeling, these advances include the biochemical and molecular characterization of many of the factors and complexes that modify chromatin structure in yeast and diverse metazoans. Chromatin modification influences nuclear processes from replication, recombination and repair to transcriptional control. Our another current effort focuses on the role of the dynamic of histone acetylation on plant development using Arabidopsis thaliana as a model system. We use molecular genetic and biochemical approaches to identify histone acetylation regulator genes that control the underlying plant morphogenesis and cellular differentiation processes.
发表文章
Publications
1. Ma L.G.*, Chen C.*, Liu X., Jiao Y., Su N., Li L., Wang X.,
2. Ma L.G., Sun N., Liu X., Jiao Y., Zhao H., Deng X.W.. Organ-specific genome expression atlas during Arabidopsis development. Plant Physiology. 2005; 138:80-91.
3. Feng S.*, Ma L.G.*, Wang X., Xie D., Dinesh-Kumar S. P., Wei N., and Deng X.W.. The COP9 Signalosome Physically Interacts with SCFCOI1 and Modulates Jasmonate Responses. The Plant Cell. 2003; 15:1083-1094 (*Equal contribution).
4. Ma L.G., Zhao H., Deng X.W.. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development. Development. 2003; 130: 969-981.
5. Ma L.G., Gao Y., Qu L.J., Chen Z.L., Li J.M., Zhao H., Deng X.W.. Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. The Plant Cell. 2002; 14: 2383-2398.
6. Holm M., Ma L.G., Qu L.J., Deng X.W.. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Development. 2002; 16: 1247-1259.
7. Wang H.*, Ma L.G.*, Habashi J., Li J.M., Zhao H., Deng X.W.. Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. The Plant Journal. 2002; 32:723-734 (*Equal contribution).
8. Ma L.G., Li J.M., Qu L.J., Hager J., Chen Z.L., Zhao H., Deng X.W.. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. The Plant Cell. 2001; 13: 2589-2607.
9. Wang H., Ma L.G., Li J.M., Zhao H., Deng X.W.. Direction interaction of Arabidopsis cryptochromes with COP
10. Ma L.G., Cui S., Xu X., and Sun D.Y.. The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. The Plant Cell. 1999; 11:1351-1363.